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Preface 

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California’s electricity and natural gas ratepayers. The PIER Program strives 
to conduct the most promising public interest energy research by partnering with RD&D 
entities, including individuals, businesses, utilities, and public or private research institutions. 

PIER funding efforts focus on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 
• Energy-Related Environmental Research 
• Energy Systems Integration  
• Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy Technologies 
• Transportation 

In 2003, the California Energy Commission’s PIER Program established the California Climate 
Change Center to document climate change research relevant to the states. This center is a 
virtual organization with core research activities at Scripps Institution of Oceanography and the 
University of California, Berkeley, complemented by efforts at other research institutions. 
Priority research areas defined in PIER’s five-year Climate Change Research Plan are: 
monitoring, analysis, and modeling of climate; analysis of options to reduce greenhouse gas 
emissions; assessment of physical impacts and of adaptation strategies; and analysis of the 
economic consequences of both climate change impacts and the efforts designed to reduce 
emissions. 

The California Climate Change Center Report Series details ongoing center-sponsored 
research. As interim project results, the information contained in these reports may change; 
authors should be contacted for the most recent project results. By providing ready access to 
this timely research, the center seeks to inform the public and expand dissemination of climate 
change information, thereby leveraging collaborative efforts and increasing the benefits of this 
research to California’s citizens, environment, and economy. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164. 
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Abstract 

 

Perennial crops are among the most valuable of California’s diverse agricultural products. They 
are also potentially the most influenced by information on future climate, since individual 
plants are commonly grown for more than 30 years. This study evaluated the impacts of future 
climate changes on the 20 most valuable perennial crops in California, using a combination of 
statistical crop models and downscaled climate model projections. County records on crop 
harvests and weather from 1980–2005 were used to evaluate the influence of weather on yields, 
with a series of cross-validation and sensitivity tests used to evaluate the robustness of 
perceived effects. In the end, only four models appear to have a clear weather response based 
on historical data, with another four presenting significant but less robust relationships. 
Projecting impacts of climate trends to 2050 using historical relationships reveals that cherries 
are the only crop unambiguously threatened by warming, with no crops clearly benefiting from 
warming. Another robust result is that almond yields will be harmed by winter warming, 
although the effects of summer warming on this crop are less clear. Efforts to shift almond areas 
or varieties in response to expected temperature changes appear to present limited options for 
adaptation. Overall, the study has advanced understanding of climate impacts on California 
agriculture and has highlighted the importance of measuring and tracking uncertainties due to 
the difficulty of uncovering crop-climate relationships.  

 

 

 

Keywords: Global warming, fruits, nuts, climate adaptation, Lasso, Regression Trees 
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1.0 Introduction 
Agriculture is an important component of California’s economy, landscape, and culture, and is 
among the human activities most vulnerable to impending climate changes. Two particularly 
unique and relevant features of agriculture in California are (1) the diversity of crops grown, 
with California the leading U.S. producer of over 80 crops, and (2) the substantial fraction of 
agricultural value (roughly one-third according to the California Agricultural Statistics Service 
[2006]) derived from long-lived perennial crops, such as grapes and almonds. As perennials 
typically remain in the ground for over 20 years, climate changes over the next 20–30 years will 
be relevant to crops that have already been planted, and especially to those that will be planted 
over the next few years.  

The goals of this paper are to assess the potential impacts of climate change on perennial 
cropping systems in California over the next 20–50 years, and to identify possible adaptation 
strategies to minimize the potential costs and maximize the potential benefits of climate change. 
We focus here on effects of changes in average monthly minimum and maximum temperature 
and precipitation, and therefore our results do not incorporate the potentially important 
additional effects of changes at sub-monthly time scales, such as increased frequency of extreme 
events. We consider these latter effects, which are difficult to estimate on a crop-by-crop basis 
because of data constraints, in a companion report.  

While perennial crops provide a unique opportunity to incorporate climate projections into 
decisions made today, they also present some unique challenges compared to projecting 
impacts and adaptation options in annual crops. First, the slow growth of perennials makes 
experimental warming trials difficult. Second, far fewer models exist to describe perennial crop 
growth compared to annual crops, in part reflecting the lack of experimental data. While annual 
crop studies can rely on process-based models such as EPIC or CERES, modeling of perennial 
crops is limited primarily to statistical models developed from historical variations in weather 
and crop harvests. Third, perennials can be affected by weather at all times of the year, while 
annual crops are mainly influenced by weather during the summer growing season. Identifying 
the particular weather variables most relevant to perennial crop growth can therefore be more 
difficult than with annuals. 

2.0 Previous Work 
In prior studies, we have attempted to summarize the effects of weather on perennial yields 
using California statewide average time series of crop harvests since 1980, combined with daily 
observations of weather that were spatially averaged according to the distribution of each crop 
throughout the state (Lobell et al. 2007; Lobell et al. 2006a). The relatively small dataset (26 data 
points corresponding to 1980-2005) dictated that only two to three weather variables be 
considered for each crop, the selection of which relied inevitably on subjective decisions based 
on exploratory data analysis and physiological principles. For some crops, the relationships 
contained too much scatter to say anything very useful about impacts of future warming, but 
for others the models indicated clear negative responses to warming.  

Almonds, in particular, exhibited a strong negative response to nighttime temperatures (Tmin) 
in February (Figure 1a), and for projections of warming we estimated a roughly 10% loss of 
almond yields by 2030. We note that the importance of this variable is not likely associated with 
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chilling hour accumulation (CHA), which is often cited as a principal control on nut tree 
development and growth, because most chilling hours accumulate in November-January, and 
not in February. Indeed, our computations of CHA, following the method of Balacchi and Wong 
(2008) for individual stations and then averaging stations based on almond areas, exhibit a 
much weaker relationship with almond yields than February Tmin (Figure 1b).  

 
Figure 1. The relationship between California average almond yields (% anomaly 
from trend) and almond area-weighted state averages of (a) average February 
Tmin and (b) chill  hour accumulation between November-February. The best fit 
second-order polynomial is shown by gray line, and dashed vertical l ine indicates 
average value for 1980–2005. 

 
Instead, we believe the importance of February Tmin relates to the critical period of pollination 
that occurs in most varieties in mid-late February. The effective period of pollination is longer 
when temperatures are low during the bloom season, as the stigma is receptive to pollen for 
longer periods of time (Polito et al. 1996). For example, 2005 had a particularly warm February 
and the United States Department of Agriculture (USDA) almond production report stated a 
primary reason for low yield expectations was that “bloom was rapid with an extremely poor 
set and numerous orchards displayed early petal fall.” While poor pollination appears the most 
likely mechanism, it is impossible to tie a statistical relationship to any single process, which of 
course causes some concern when applying past empirical relationships to the future. Our 
perspective is that the major processes linking weather to yields are likely to be similar over the 
next 20–30 years, when climate is not too different than it is today, and therefore the empirical 
relationships should be informative in the absence of any more mechanistic predictions. 

3.0 Overview of the Current Study 
We sought to improve on the past work in three major ways. First and foremost, we analyzed 
county level crop and weather data to reevaluate the relationship between weather and yields 
for a wide range of perennial crops. There is no obvious scale at which to model weather-yield 
relationships. The use of county data has the main advantage that it provides additional data 
points, as well as access to a wider range of temperatures than when looking at statewide 
averages. However, there are several potential pitfalls when using county level data. First, data 
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at the county scale are considerably “noisier” than statewide averages, because the number of 
fields used to estimate production is limited in each individual county. Second, factors other 
than climate vary between counties, so that comparing yields in a cross-section can be 
susceptible to omitted variable biases. (Below we evaluate this bias by repeatedly leaving some 
counties out of the model training and testing predictions for these counties.)  

The second objective was to project impacts through 2050 using down-scaled climate 
projections from six climate models, two downscaling methods, and two emissions scenarios. 
Third, we sought to assess adaptation options for almonds, which as mentioned above is a very 
valuable crop in California and one previously identified as susceptible to warming. 
Specifically, we evaluated (1) whether some almond varieties will be better suited to a warmer 
climate than others, and (2) whether some counties will be better suited than others. Both of 
these issues are relevant to decisions made when planning new almond orchards, which are 
expanding rapidly relative to other crops in California (Figure 2).  

 

 
Figure 2. Trend in almond area in California  
Source: USDA 
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4.0 Approach 

4.1. Statistical Yield Models Using County Data 
County level area and yield data for 1980–2005 were obtained from the Agricultural 
Commissioners’ reports.1 Measurements of daily minimum and maximum (Tmax) temperatures 
and precipitation (Prec) were obtained for 382 of the National Weather Service’s Cooperative 
Stations in California (data provided by Mary Tyree of UCSD). For each county, we computed 
daily and monthly averages of each variable for all stations below 200 meters (656 feet) 
elevation, to avoid inclusion of high-elevation stations removed from agricultural areas (e.g., in 
eastern Fresno county). We also computed daily values of chilling hour accumulation following 
Baldocchi and Wong (2008), equal to the total estimated hours each day below a threshold value 
of 45˚F (7.22˚C). 

This study considers the 20 leading perennial crops, in terms of total state value in 2003–2005 
(Table 1). For each crop we consider 72 potential predictor variables: monthly average Tmin, 
Tmax, and Prec from the September prior to the harvest year through August of the harvest 
year, along with their squares. We consider Tmin and Tmax separately because they are often 
not correlated from year-to-year with each other, particularly in winter, and often one but not 
the other is highly correlated with yields (Lobell et al. 2006a). Combining the two into average 
temperature would therefore degrade model performance in these situations. We consider both 
the variable and its square in order to capture nonlinear relationships, as crops often possess an 
optimal temperature where yields are maximized relative to both cooler and warmer 
temperatures. 

To develop statistical models for perennial crops, we must struggle with the fundamental 
problem of variable selection. Perennials are affected by weather throughout the year, with each 
crop potential responsive to different aspects of climate. Moreover, much less research has 
characterized the weather response of perennial crop growth than for annuals. A priori 
selection of specific months or climate variables is therefore difficult. At the same time, 
including all possible months and variables will result in an over-parameterized model that 
tends to overfit the training sample and give poor predictive performance. For this study, we 
adopt two statistical procedures commonly used in problems where variable selection is an 
important criterion.  

                                                
1 National Agriculture Statistics Service, County Agricultural Commissioners’ Data. 

www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/indexcac.asp 
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Table 1. Leading perennial crops in California, ranked by 2003–2005 average total 
statewide gross cash income, in millions of dollars  
 
Rank  Crop  2003  2004  2005  AVERAGE 

1  Almonds  1,600  2,189  2,337  2,042 
2  Grapes, Wine  1,543  1,605  2,215  1,787 
3  Berries, Strawberries*  1,173  1,206  1,110  1,163 
4  Hay, All  544  609  703  618 
5  Grapes, Raisin  348  616  567  510 
6  Walnuts  378  452  540  457 
7  Grapes, Table  407  535  384  442 
8  Pistachios  145  465  577  396 
9  Oranges, Navel  290  418  363  357 
10  Avocados  365  375  280  340 
11  Lemons  218  271  319  270 
12  Berries, Bushberries  146  209  224  193 
13  Oranges, Valencia  131  142  218  164 
14  Peaches, Freestone  139  110  157  135 
15  Peaches, Clingstone  108  141  122  124 
16  Plums, Dried  132  121  81  111 
17  Nectarines  119  86  120  109 
18  Cherries  107  123  85  105 
19  Grapefruit  69  68  130  89 
20  Plums  87  74  92  85 
 
 *Although strawberries are perennials, they are re-planted each year in most of California 
Source: USDA 

 
The first is the least absolute selection and shrinkage operator (Lasso) model, which is a 
variation on ordinary least square (OLS) regression that “shrinks” the regression coefficient 
towards zero to avoid overfitting (Hastie et al. 2001). In statistical terms, the Lasso model adds a 
little bias to the model in return for a larger reduction in variance. In the Lasso, coefficients for 
many variables can be shrunk to zero, so that resulting model only uses a subset of the initial set 
of variables. As described in Efron et al. (2004), the Lasso can be viewed in this respect as a form 
of stagewise variable selection, as opposed to the more unstable method of stepwise variable 
selection. While the statistical details of the Lasso model are beyond the scope of this report, 
more information can be found in the previously cited references. Here we implement the Lasso 
using the “lars” package in R. An important decision in the Lasso is when to stop the stagewise 
process that shrinks the coefficients. Here we use the common approach of selecting the model 
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with the minimum value of the complexity parameter Cp, which provides an estimate of out-of-
sample prediction error.  

The second statistical approach we use on the county data is regression tree modeling. 
Regression trees work by searching for the variable and value of that variable that best splits a 
dataset into two subsets, where “best” is defined as the split that achieves the maximum 
difference between the averages of the two subsets. Each split, called a daughter node, is then 
treated as its own dataset and the process is repeated recursively. For this reason, the method is 
also described as recursive binary partitioning. The resulting tree model uses the mean of each 
node as the prediction value, so that it effectively fits a piecewise constant function to the data. 
Regression trees are an increasingly popular tool in data mining, as they possess many 
attractive features such as automated variable selection, low sensitivity to outliers and missing 
data, and an ability to capture interactions between variables. Here we implement regression 
trees using the “rpart” package in R. The tree was grown until no split improved model R2 by 
more than 0.01, and then it was pruned by eliminating nodes until R2 decreased by more than 
0.05. The pruning procedure is a common technique to avoid overfitting the model to the 
calibration dataset. 

Both the Lasso and regression tree models are imperfect. For example, the Lasso is a linear 
model that is incapable of capturing important interactions between weather in different 
months. Regression trees fit piecewise constant functions and thus provide crude 
approximations to linear relationships. By employing both techniques, we sought to identify for 
each crop where the relationships between weather and yields were robust enough that model 
choice had a relatively small effect on inferred impacts. In such cases, the assumptions that vary 
for the two methods can be viewed as having a small effect on the results. 

However, comparison of the two methods does not reveal the importance of assumptions that 
both share. One particular concern is that differences among counties that appear due to 
weather are, in fact, associated with omitted variables that are correlated with weather. Possible 
omitted variables include soil quality, topography, and management techniques. To examine 
sensitivity to omitted variables, we used three approaches.  

First, we simply plotted the yield data versus each climate variable identified as important in 
the Lasso model, with each county coded by a different color. This allowed us to visually 
examine whether the correlation was driven largely by differences among counties. 

Second, we performed a bootstrap analysis of model performance, where for each of 100 
iterations we removed one-third of the counties from the calibration procedure. The model 
calibrated on the other two-thirds of the data was then used to predict yields for the test subset, 
and the R2 was computed between predicted and actual yields. Cases where the test R2 was 
substantially lower than the training R2 indicated the possible presence of omitted variable bias. 

As a third check against omitted variables, we selected the five most important variables 
identified from the Lasso analysis and performed an OLS regression with and without a 
dummy variable for county (i.e., a county fixed-effect). Model predictions for the average 
statewide impact of a 2˚C (3.6˚F) warming were compared for the two models, and when the 
answers diverged it indicated the presence of strong county-fixed effects.  
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An overview of the modeling process for the county level models study is given in Figure 3. 
Only for models that appeared robust, namely with relatively high R2 and low sensitivity to 
model structure and fixed-effects, did we then attempt to project impacts of future climate 
change. Figure 3 indicates which of the 20 crops were considered robust and which were 
eliminated for each reason. While all model evaluation was based on statistical tests, more 
qualitative work could be done to verify the model coefficients in the future, for example by 
surveying growers on their impressions of the most important weather variables. 

 

 
Figure 3. Overview of steps taken to model yield responses using county-level data 
 

4.2. Projections of Climate Change Impacts through 2050 
The crop models developed here were then combined with climate change projections to assess 
potential impacts through 2050. We limit our projections to 2050 because temperatures beyond 
this date are frequently beyond the range of temperatures used to fit the statistical models. We 
emphasize that these projections are conditional on the assumption of no adaptation, and 
therefore are unlikely to represent the true future course of yield impacts. However, 
understanding the potential impacts in the absence of adaptation is a critical step towards 
planning and prioritizing adaptation options. 
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We used climate projections from six general circulation models and two emission scenarios 
(Special Report on Emissions Scenarios [SRES] A2 and B1), which were downscaled using the 
bias-corrected spatial downscaling (BCSD) method of (Maurer et al. 2002). Average monthly 
values of Tmin, Tmax, and Prec for 1950–2099 were computed for each of the 12 model 
simulations and averaged for each county over the portion of the county classified as 
agriculture in a California map of management landscapes.2 This latter step was important to 
ensure that the climate model data were consistent with the extent of observational station data 
used in the crop model calibration, which were limited to low elevation areas. Their agreement 
was confirmed by comparing the climatology of simulated and observed temperature and 
precipitation averages in each county over the observation period of 1980–2005 (not shown). 

The county averages of monthly climate model simulations were then fed into the crop models 
to project yields for each county for 1950–2099, assuming the technology of 2000 (the predictor 
“year” was held constant at 2000). Statewide average yields were computed by assuming the 
current distribution of crop area within California. The results are presented as percent changes 
from the 1995–2005 average yields, and as 21-year moving averages to emphasize the trend 
rather than year-to-year variability. We present projections only out to 2050 because 
(1) projections beyond this time period require substantial extrapolation of the statistical 
models, and are therefore less reliable, and (2) from our perspective most decisions in the 
agricultural sector have a timeline of 50 years or less.  

Finally, to estimate the uncertainty associated with the climate projections, the yield projections 
were made for each of the 12 climate model simulations (six models x two emission scenarios). 
To estimate uncertainty associated with the crop models, the projections were repeated using 
crop models generated from bootstrap samples of the historical data. We present results both 
for climate uncertainty only and for the combination of climate and crop uncertainty.  

4.3. Almond Varieties 
As almonds are California’s single most valuable perennial and are susceptible to winter 
warming (see below), we investigated whether different common commercial varieties have 
differential sensitivity to warming. If so, planting of more heat-tolerant varieties could be 
pursued as an adaptation strategy. Data on statewide production of individual varieties since 
1980 were obtained from the Almond Board of California (courtesy of Sue Olson - Associate 
Director, Statistics & Compliance). Corresponding data on statewide areas of individual 
varieties were obtained from the USDA’s National Agricultural Statistics Service, California 
Field Office (courtesy of Jack Rutz, Deputy Director).  

The time series of each variety were then analyzed separately in an identical manner to the time 
series of total almond production (Lobell et al. 2007). Briefly, statewide average time series of 
Tmin, Tmax, and Prec were generated by averaging station data according to the fraction of 
2003 statewide area for the specific almond variety that was found in the county. The almond 
production and yield time series were then detrended using a linear trend, and an 
autoregressive model was used to remove the autocorrelation that is often present in time series 
of alternate bearing crops such as almonds. The production and yield anomalies were then 

                                                
2 California Department of Forestry and Fire Protection, FRAP. http://frap.cdf.ca.gov.  
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regressed against February Tmin. Here we present the results for the production data, since the 
relationships were slightly stronger and since production statistics are more reliable than area 
or yield statistics (Jack Rutz, personal communication), although results for the two variables 
were similar.  

5.0 Results 

5.1. County Scale Yield Models 
5.1.1. Lasso Models 
Twelve of the 20 perennial crops considered did not exhibit any clear relationships between 
weather and yields, with the models able to capture less than 15% of the variation in the yield 
data not used to calibrate the model. For the remaining eight crops, the models were able to 
explain more than 46% of the variance in training data, and, with the exception of table grapes, 
more than 20% of the test data (Figure 4).  

The coefficients for the eight successful models, which are useful for understanding which 
temperature variables most closely relate to yields, are summarized in Figure 5. These 
coefficients were derived from a single computation of the Lasso using the full dataset (as 
opposed to the R2 statistics which were derived by repeated calibrations to subsets of the data). 
Rather than display in units of absolute yields, these values are expressed in terms of the 
percent change in statewide average yields that would result from a uniform 2˚C increase in 
each variable (Tmin and Tmax for each month.) Of course, because each variable is represented 
by a second-order polynomial, a positive response to 2˚C warming does not necessarily imply a 
positive response to greater magnitudes of warming. However, we consider 2˚C to be a 
reasonable approximation for the magnitude of warming expected by 2050 (see below). 

For some crops, such as wine grapes, strawberries, and walnuts, the selected Lasso model 
possessed non-zero coefficients for most temperature variables. For others, such as table grapes 
and cherries, the majority of coefficients were shrunk to zero, indicating that weather in most 
months has insignificant effects on yields of these crops.  

Several patterns emerge from these models. For some crops, there appear to be parts of the year 
where warming is beneficial and parts of the year where warming is harmful. For example, 
warming in January and February significantly reduces yields of almonds, but yields appear to 
be enhanced by warming in May and July. Wine grapes, strawberries, and walnuts show a 
qualitatively similar pattern of yield losses for warming throughout the winter but yield gains 
from warming in summer months. Freestone peaches exhibit an opposite pattern, with winter 
warming—particularly at night—beneficial, but warming during the summer extremely 
harmful. 
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Figure 4. Model R2 for training and test datasets for each crop with an average test 
R2 greater than 0.15. The twelve other crops considered in this study did not meet 
this criterion. Black point indicates training R2 for full dataset, red indicates test R2 
when omitting one-third of years from calibration and using these to test the model, 
and blue indicates test R2 when omitting one-third of counties. Lines indicate 95% 
confidence interval based on 100 repeated tests with a different (random) one-third 
omitted.  
 

Cherries and table grapes exhibit a different pattern, where warming rarely has a benefit at any 
time of year. The case of cherries is especially stark, with yields harmed by warming 
throughout November–February, the primary months in which trees accumulate chilling hours. 
The greater importance of Tmin than Tmax in these months supports the notion that reduced 
chilling (which occurs mainly at night) is the culprit for yield losses.  



11 

 

 
Figure 5. Summary of temperature coefficients for Lasso model, expressed as % change in state average yields for 
a 2˚C warming. Blue and red bars indicate Tmin and Tmax, respectively, for each month. Coefficients without bars 
were shrunk to zero by the Lasso model.  
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5.1.2. Fixed-Effects 
Now we consider whether these county-level relationships between weather and yields may be 
biased by omission of non-climatic variables that vary by county, such as soil quality. This bias 
was evaluated by selecting the five weather variables with the largest effect in the Lasso model 
(Figure 5) and running an OLS regression with just these variables and their squares. The OLS 
regression was then re-run after adding a dummy variable for county. (Dummy variables 
cannot be entered in a Lasso model, which is why we resort to OLS models in this section.)  

The changes in statewide average yields for a 2˚C warming were computed for both OLS 
regressions, using bootstrap resampling to estimate a confidence interval. The results (Figure 6) 
demonstrate that five of the eight crops appear very insensitive to inclusion of county fixed-
effects, indicating that the Lasso results are not biased by omitted variables. However, three 
crops (hay, walnuts, and freestone peaches) were significantly different between the two OLS 
models, with non-overlapping 5%–95% confidence intervals.  

 
Figure 6. The predicted change in state average yields for a 2˚C warming using 
ordinary least square regression models without (black) and with (red) county 
fixed-effects. Error bars indicate 5%–95% confidence interval based on 100 
bootstrap replicates. Large differences between the two indicate the potential 
importance of omitted variables, such as soil quality, that vary by county. The 
models contained the five temperature variables deemed most important in the 
Lasso model. Only three variables were used for table grapes since the Lasso 
model included only three temperature variables. 
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Figure 7 displays a scatter plot of yields versus an apparently important weather variable for 
each of these three crops, with each county represented as a different color. The problem of 
fixed-effects is best exemplified by freestone peaches, where the results from the OLS models 
with and without fixed-effects diverged most dramatically. A plot of daytime temperature in 
August and yields reveals that a single county, Riverside, has particularly high temperatures 
and low yields. (Even when Riverside is removed from the analysis, however, the sensitivity to 
county-fixed effects remains.)  

 
Figure 7. Scatter plots of yields vs. selected temperature variable for three crops 
with sensitivity to county fixed-effects. Each data point represents an individual 
county-year, with each county represented by a different color. 
A sensitivity of results to fixed-effects indicates that much of the perceived effect of weather is 
obtained by comparing yields across counties, rather than by comparing across years. It does 
not necessarily indicate that weather is not the true reason causing yields to differ among 
counties. However, one cannot rule out the possibility that other differences among counties 
explain at least part of the yield differences. There is therefore no obvious choice between a 
model with and without fixed-effects, and here we simply point to the crops that are sensitive to 
this choice. For crops that are insensitive to this choice, such as almonds and grapes, the models 
utilize differences between counties but are not entirely dependent on them, as evidenced by 
the similar results when the model is limited to using only differences across years. 

5.1.3. Comparison of Lasso and Regression Tree Models 
We next consider the importance of model structural assumptions. In particular the OLS and 
Lasso models assume that yield response to weather can be represented as a second-order 
polynomial, with no interactions among variables. In contrast, the regression tree models use 
piecewise constant fits and are capable of capturing interactions and higher order nonlinearities. 
Figure 8 compares the inferred sensitivity of statewide average yields to a 2˚C warming for the 
Lasso and regression tree models for each crop. For many of the crops the two models provided 
predictions that were qualitatively consistent, with overlapping confidence intervals. An 
important exception was wine grapes, where the Lasso predicts on average a statewide loss of 
roughly 15% for 2˚C warming while the regression tree predicts a 5% increase. The regression 
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tree model can choose different variables for each bootstrap iteration, so it is difficult to describe 
exactly why it shows an increase. However, when fit to the entire dataset for wine grapes, the 
regression tree chose as predictor variables only August Tmin and Tmax, which tend to be 
higher in the Central Valley counties with higher yields.  

 
Figure 8. The predicted change in state average yields for a 2˚C warming using 
the Lasso (black) and regression tree models (red). Error bars indicate 5%–95% 
confidence interval based on 100 bootstrap replicates. Large differences 
between the two indicate the potential importance of structural assumptions in 
the models.  

 
Of course, for wine grapes the major concern is not total production but the quality of the 
grapes for winemaking. While coastal counties have varieties with lower yields, they produce 
wine with much greater economic value. Therefore, a shift to Central Valley yields and varieties 
would likely reduce, not increase, total agricultural value. While this study does not focus on 
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climate change and wine quality, previous studies have concluded that wine quality could 
suffer from more frequent summer heat extremes (Hayhoe et al. 2004; White et al. 2006).  

To summarize, the regression tree models generally support the Lasso results, with the 
exception of wine grapes. We therefore do not place great confidence in the Lasso predictions of 
lower wine grape yields with warming. At the same time, the yields of wine grapes in a future 
climate will be far less important than the quality of grapes that can be grown.  

5.1.4. Comparison with Previous Studies 
Of the eight crops with significant models using county-scale data, four were also considered in 
previous work using statewide averages. Table 2 shows the variables and coefficients used for 
these crops. Of these crops, the model for table grapes agreed well at the two scales, with both 
the county and state models indicating modest declines in statewide average yields for 
warming. For walnuts the model from county data was ambiguous because of the sensitivity to 
fixed-effects. In the state model, walnuts showed a modest decline because of sensitivity to 
November temperatures. The county OLS model with fixed-effects showed similar declines for 
warming (Figure 6), while the OLS model without fixed-effects and the Lasso model exhibited a 
positive response to warming.  

As shown in Figure 8, the estimated response of wine grape yields to warming with county data 
was negative when using the Lasso but positive for a regression tree model. The state model 
exhibited a very small sensitivity to warming, falling between the predictions of the two county 
level models. A reasonable estimate for wine grapes may therefore be little change in statewide 
average yields for warming. 

The most striking difference between the state and county models was for almonds, the single 
most valuable perennial crop in California. The county models indicate a very low sensitivity to 
a uniform warming of 2˚C throughout the year, with the result apparently robust to omitted 
variables and structural assumptions. The state model, which relied solely on February Tmin 
for temperature response, shows instead a negative response to warming. Importantly, the 
county model also shows a strong negative effect of February warming (Figure 5). In fact, the 
inferred effect of February Tmin on yields is nearly identical when using the county or state 
average data over the range of temperatures seen in the state model (Figure 9). The county 
model possesses a larger range of temperatures, and thus is also able to capture the reduction of 
yields at very cold temperatures.  
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Figure 9. The inferred relationship between February Tmin and state 
average almond yields using (a) state-wide average yields and (b) county-
level data. The shaded area in (b) indicates the range of temperatures for 
the state model in (a). The red lines show the relationship when using all 
data, and black lines show the relationship for 50 bootstrap samples. The 
units of yields are the percentage above the value of yield at the average 
statewide temperature, which is indicated by vertical dashed line.  
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As discussed above, the small net effect of temperature on almonds in the county model arises 
from a beneficial effect of spring and summer warming that cancels the effect of winter 
warming. To test whether the state model would also exhibit this response if summer 
temperatures were included in the model, we performed a stepwise OLS regression where we 
added variables to the original state model (Table 3). The variables added are the two that had 
the biggest positive effect in the Lasso model: May and July Tmin.  

Table 3 displays the model R2, as well as the predicted response to uniform 2˚C warming for a 
model using only statewide averages and a model using county-level data. The county and state 
models give nearly identical results of ~13% yield loss when using the original two variables of 
the state model: February Tmin and January Prec. When May Tmin is added, the county model 
R2 improves substantially, while the projected loss is reduced by half to 6%. In the state model, 
the R2 also improves but the mean projected impact changes very little. In addition, the 
confidence interval becomes wider because with six variables (three weather variables plus 
their squares) and 26 data points, the model exhibits a higher variance for bootstrap resampling 
that is symptomatic of overfitting.  

When July Tmin is added, both the county and state model impacts are reduced by roughly 3%. 
Here the state model becomes very variable and the confidence interval widens further. The 
main difference between the two models is thus the strong beneficial effect of May Tmin 
warming in the county model that is simply not evident in the statewide average time series. 
According to Kester et al. (1996), May is the critical month of embryo growth and hardening, 
and “adverse conditions and stress in this period can seriously lower quality and reduce weight 
of the mature nut” (p. 96). Thus, it is at least plausible that warming in May does substantially 
benefit almond yields.  

A possible explanation for the lack of this effect in statewide time series is that it is too short to 
accurately measure this effect. To assess this, we obtained weather records and average almond 
yield data back to 1960 and repeated the OLS analysis at the state scale, with results shown in 
the right columns of Table 3. When using this longer record, the model agrees remarkably well 
with the county model that showed a significant benefit of May warming. Thus, the balance of 
evidence leads us to believe that spring warming will, in fact, benefit almond yields enough to 
offset much of the losses incurred from winter warming. 
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Table 2. Models developed from statewide average data for four perennial crops (ref). Y represents yield anomaly 
(ton acre-1).  Subscripts indicate month of climate variable, with negative values denoting a month from the year 
prior to harvest. Tn = minimum temperature (ºC), Tx = maximum temperature (ºC),  P = precipitation (mm).  
 

Crop  Equation  R2adj 

Wine grapes  Y = 2.65 Tn4 – 0.17 Tn4
2 + 4.78 P6 – 4.93 P6

2 – 2.24 P‐9 + 1.54 P‐9
2 – 10.50  0.66 

Almonds  Y = ‐0.015 Tn2 – 0.0046 Tn2
2 – 0.07 P1 + 0.0043 P1

2 + 0.28  0.88 

Table grapes  Y = 6.93 Tn7 – 0.19 Tn7
2 + 2.61 Tn4 – 0.15 Tn4

2 + 0.035 P1 + 0.024 P1
2 + 1.71 P‐10 – 0.673 P‐10

2 – 73.89  0.77 

Walnuts  Y = 0.68 Tx‐11 – 0.020 Tx‐11
2 + 0.038 P2 – 0.0051 P2

2 – 5.83  0.59 

 
Table 3. Ordinary Least Square models for almond yields using statewide average or county level data from 1980–
2005 and using statewide average data for 1960–2006. Model R2 and the estimated impact of 2˚C warming is shown 
for four models of increasing complexity. 
 

 State, 1980–2005 County, 1980–2005 State, 1960–2006 

Variables R2 Estimated sensitivity 
to +2˚C 

R2 Estimated sensitivity 
to +2˚C 

R2 Estimated sensitivity 
to +2˚C 

  mean 5th 
%tile 

95th 
%tile 

 mean 5th 
%tile 

95th 
%tile 

 mean 5th 
%tile 

95th 
%tile 

Feb Tmin 0.55 -14.9 -23.0 -5.5 0.25 -15.7 -19.6 -12.2 0.35 -14.5 -21.6 -7.9 
Feb Tmin, Jan Prec 0.74 -13.5 -20.2 -7.4 0.32 -12.6 -14.8 -9.9 0.43 -12.4 -19.7 -6.2 
Feb Tmin, Jan Prec, May Tmin 0.81 -14.5 -28.2 -5.4 0.41 -6.3 -9.9 -3.1 0.47 -5.7 -13.4 0.9 
Feb Tmin, Jan Prec, May Tmin, Jul Tmin 0.86 -11.8 -24.0 0.3 0.46 -3.1 -9.5 2.3 0.48 -1.4 -14.4 14.8 
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5.2. Projected Impacts of Climate Change 
The climate model projections indicated similar patterns in each county, with temperatures for 
Fresno displayed in Figure 10 as an example. The two emission scenarios give similar average 
temperature changes until roughly 2040, indicating that the next 30+ years of climate change are 
“locked-in” because of inertia in the climate and energy systems (Meehl et al. 2007). 
Temperature changes are slightly more rapid in summer months than in winter months, a result 
that likely reflects a simulated warming feedback from soil moisture decreases in summer 
months. As discussed in Lobell et al. (2006b), the representation of soil moisture feedbacks in 
general circulation models is questionable in agricultural areas, since none represent the 
irrigated conditions that exist in the Central Valley. Nonetheless, we use these climate scenarios 
in the current study without adjustment for this potential bias and discuss the potential 
implications of the bias below.  

 

 
Figure 10. Projected change in average monthly temperature for (a) January and (b) 
February. Each thin line shows an individual model projection, with red 
representing an A2 emission scenario and blue representing B1. Thick lines show 
the model average for each emission scenario. The results are presented as 
changes (˚C) from the 1980–1999 climatology, and as 21-year moving averages to 
emphasize the trend, rather than year-to-year variability. 
 
The simulated impact of climate change on statewide average yields for the four crops with the 
most reliable crop models are shown in Figure 11, assuming no shift in crop areas. For almonds, 
the trend is slightly positive with a projected increase of less than 5% by 2050 relative to current 
climate. As seen above (Figure 8), the impact of a uniform 2˚C increase was a very small net 
change in yield. The slight positive impact of the actual climate projections indicates the greater 
warming of summer months relative to winter, with the former benefiting and the latter 
harming almond yields in the model.  
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Figure 11. Simulated change in crop yields for four crops with most reliable 
crop models. The thick blue line shows the average of all projections, the 
dark shaded area shows 5%–95% range of projections when using multiple 
climate models, and the light shaded area shows 5%–95% range when using 
multiple climate models and multiple crop models (based on bootstrap 
resampling). The results are presented as percent changes from the 1995–
2005 average yields, and as 21-year moving averages in order to emphasize 
the trend rather than year-to-year variability. 

 
Average projections for the other three crops indicate negative trends out to 2050, ranging from 
less than 5% decreases for table grapes to nearly 20% average loss for cherries by 2050. The 
shaded areas indicate substantial uncertainties associated with these projections, arising from 
both the climate and crop models. For example, average statewide cherry yields may be 
reduced by as much as 30% or as little as 0% by 2050 relative to the climate of 2000.  

The average projected impacts for 2030–2050 relative to current climate in each county are 
illustrated in Figure 12 for the four most reliable crop models. Overall, the simulated impacts 
were fairly uniform throughout California, suggesting limited potential benefits from changing 
the spatial distribution of crops within their current growing areas. Slightly more negative 
impacts were simulated in the southern part of the state for strawberries and cherries. Again, 
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these results have the caveat that the models used here do not consider effects of weather 
variables other than monthly averages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Current % of crop area in each county (left) and average 
projected changes in county yields (right) for four perennial crops. 
Yield changes are expressed as percentage difference between average 
yields in 2030–2050 and those in 1995–2005.  
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Figure 13 displays projections for the four less reliable crop models, with a slight yield increase 
projected for hay, little change for walnuts, a slight decrease for wine grapes, and considerable 
decrease for freestone peaches. As discussed above, these results should be treated with more 
caution because of the sensitivity of the crop model to treatments of county fixed-effects or 
structural assumptions (Lasso vs. regression tree).  

 

 
Figure 13. Same as Figure 11, but for four crops with less reliable models, due to 
sensitivity to fixed-effects or significant differences between lasso and regression 
tree models 
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5.3. Almond Variety Switching as a Possible Adaptation? 
For almonds, the most valuable perennial crop in California, the results from the county-scale 
model presented above suggested that previous estimates based only on statewide data may 
have overestimated warming-induced losses. However, the county model agrees with the state 
model in predicting that winter warming, by itself, will be harmful in the absence of adaptation. 
An ability to adapt to this warming could thus substantially improve future yields of almond 
growers, even if the net effect of climate change without adaptation is small.  

Different varieties of almonds have different chilling requirements and blooming periods. A 
reasonable hypothesis is therefore that some varieties exhibit lower sensitivity to winter 
temperatures than others. Alternatively, because almond varieties are self-sterile and require 
other adjacent varieties for successful pollination, the response of any individual tree to weather 
reflects the behavior of a collection of varieties, and therefore may not exhibit unique 
sensitivities to warming. For example, average annual yields for common varieties (Figure 14a) 
exhibit strong correlations over the 1980–2005 period.  

 
Figure 14. (a) Time series of statewide average almond yields for five major 
varieties. (b) The relationship between production anomalies and February Tmin for 
five major varieties. Lines indicate best fit second-order polynomial. No significant 
differences in the response of different varieties to February Tmin are evident. 
 

A comparison of production anomalies (in percentage of recent production) with February 
Tmin offers little support for the hypothesis that varieties exhibit significantly different 
responses to winter warming, as all of the five varieties with sufficiently long records exhibit a 
similar negative relationship with February Tmin (Figure 14b). As a result, this study found 
little evidence that switching among the current commercial varieties offers a promising 
pathway towards climate adaptation.  

Given the self-sterile nature of almonds, it is more likely that a holistic approach to adaptation is 
needed, with selection of a group of varieties that are less sensitive to warming. As discussed 
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above, the most likely explanation for sensitivity to February Tmin is a shortening of the critical 
bloom period in warmer years, although this claim deserves further scrutiny. Thus, emphasis 
on traits controlling successful pollination may be warranted in variety development and 
selection. 

6.0 Discussion and Conclusions 
The potential impacts discussed above considered the direct effects of temperature and rainfall 
on perennial crop yields. Importantly, several other factors related to climate change were not 
addressed. First, it was assumed that historical management practices that affect the response of 
yields to weather remained constant. Specifically, all of these crops are irrigated in the entirety 
of their area, and while they would not be grown without irrigation, declining water resources 
related to climate change may force reductions in the acreage grown or the amount of irrigation 
applied. Thus, the omission of water resources likely creates an overly optimistic view of net 
impacts on the agricultural economy, although decreased water availability will more heavily 
impact lower value annual crops than the higher value perennials considered here (Tanaka et 
al. 2006).  

Second, we did not consider the direct fertilization effect of higher carbon dioxide (CO2) levels, 
which according to the SRES scenarios will reach between roughly 450–600 parts per million 
(ppm) by 2050. The magnitude of CO2 fertilization for perennials is not well known. Open-top 
chamber experiments with sour orange trees showed substantial yield increases of up to 80% 
for a 300 ppm CO2 increase, even after 13 years (Idso and Kimball 2001) but studies on other 
tree species show substantially lower rates. While the fertilization effect of CO2 is relevant to 
projections of net yield changes, we argue that this effect is likely to be similar across the range 
of perennial species considered here, all of which possess the C3 photosynthetic pathway. The 
relative priorities for adapting California crops to climate change therefore should not depend 
greatly on the exact magnitude of CO2 fertilization. 

Third, we also omitted analysis of detrimental effects of high ozone levels, which may become 
more frequent and extreme in the next 50 years. Studies with annual crops suggest that losses 
from ozone may more than offset the gains from CO2 fertilization (Long et al. 2006).  

One of the main conclusions of this study is that, among the 20 most valuable perennials crops, 
cherries are likely be the most negatively affected by warming over the next decades. This likely 
relates to a loss of chilling, but again empirical models cannot unambiguously identify 
mechanisms. While cherries rank only eighteenth by average value for 2003–2005 (Table 1), they 
are rapidly increasing in popularity. For example, bearing acres of cherries hovered around 
10,000 from 1920 to the early 1990s, before increasing to 20,000 in 2000 and 28,000 in 2008.3 We 
do not consider here whether the economic decisions to maintain existing or establish new 
cherry orchards would be affected by consideration of lower yields in future climates, but this is 
a topic deserving of future study.  

Another robust result is that almond yields will be harmed by warming of February 
temperatures, as this effect is revealed in both state- and county-level analyses (Figure 9). Less 
                                                
3 California Sweet Cherries, 1920-2006. 
www.nass.usda.gov/Statistics_by_State/California/Historical_Data/Cherries.pdf 
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certain is the beneficial effect of warmer springs and summers, which appear to cancel the 
losses from winter warming in the county-level model but not in the state model (Table 3). 
Regardless of the summer effect, adaptation of almonds to warmer winters represents a 
substantial economic opportunity. Almonds are the single most valuable perennial crop and are 
also experiencing a surge in popularity and planted acreage (Figure 2).  
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